3.661 \(\int \frac{\sqrt{d+e x}}{(f+g x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\)

Optimal. Leaf size=80 \[ \frac{2 \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{\sqrt{g} \sqrt{c d f-a e g}} \]

[Out]

(2*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*
e*g]*Sqrt[d + e*x])])/(Sqrt[g]*Sqrt[c*d*f - a*e*g])

_______________________________________________________________________________________

Rubi [A]  time = 0.377879, antiderivative size = 80, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 46, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.043 \[ \frac{2 \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{\sqrt{g} \sqrt{c d f-a e g}} \]

Antiderivative was successfully verified.

[In]  Int[Sqrt[d + e*x]/((f + g*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*
e*g]*Sqrt[d + e*x])])/(Sqrt[g]*Sqrt[c*d*f - a*e*g])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 32.8203, size = 78, normalized size = 0.98 \[ - \frac{2 \operatorname{atanh}{\left (\frac{\sqrt{g} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}}{\sqrt{d + e x} \sqrt{a e g - c d f}} \right )}}{\sqrt{g} \sqrt{a e g - c d f}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((e*x+d)**(1/2)/(g*x+f)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

-2*atanh(sqrt(g)*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))/(sqrt(d + e*x)*s
qrt(a*e*g - c*d*f)))/(sqrt(g)*sqrt(a*e*g - c*d*f))

_______________________________________________________________________________________

Mathematica [A]  time = 0.090064, size = 93, normalized size = 1.16 \[ -\frac{2 \sqrt{d+e x} \sqrt{a e+c d x} \tanh ^{-1}\left (\frac{\sqrt{g} \sqrt{a e+c d x}}{\sqrt{a e g-c d f}}\right )}{\sqrt{g} \sqrt{(d+e x) (a e+c d x)} \sqrt{a e g-c d f}} \]

Antiderivative was successfully verified.

[In]  Integrate[Sqrt[d + e*x]/((f + g*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(-2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqrt[-(c
*d*f) + a*e*g]])/(Sqrt[g]*Sqrt[-(c*d*f) + a*e*g]*Sqrt[(a*e + c*d*x)*(d + e*x)])

_______________________________________________________________________________________

Maple [A]  time = 0.036, size = 87, normalized size = 1.1 \[ -2\,{\frac{\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade}}{\sqrt{ex+d}\sqrt{cdx+ae}\sqrt{ \left ( aeg-cdf \right ) g}}{\it Artanh} \left ({\frac{g\sqrt{cdx+ae}}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ) } \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((e*x+d)^(1/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

-2/(e*x+d)^(1/2)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)/(c*d*x+a*e)^(1/2)/((a*e
*g-c*d*f)*g)^(1/2)*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(e*x + d)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g*x + f)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.299598, size = 1, normalized size = 0.01 \[ \left [\frac{\log \left (-\frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (c d f g - a e g^{2}\right )} \sqrt{e x + d} +{\left (c d e g x^{2} - c d^{2} f + 2 \, a d e g -{\left (c d e f -{\left (c d^{2} + 2 \, a e^{2}\right )} g\right )} x\right )} \sqrt{-c d f g + a e g^{2}}}{e g x^{2} + d f +{\left (e f + d g\right )} x}\right )}{\sqrt{-c d f g + a e g^{2}}}, -\frac{2 \, \arctan \left (\frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{c d f g - a e g^{2}} \sqrt{e x + d}}{c d e g x^{2} + a d e g +{\left (c d^{2} + a e^{2}\right )} g x}\right )}{\sqrt{c d f g - a e g^{2}}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(e*x + d)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g*x + f)),x, algorithm="fricas")

[Out]

[log(-(2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*f*g - a*e*g^2)*sqrt(e*
x + d) + (c*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x)
*sqrt(-c*d*f*g + a*e*g^2))/(e*g*x^2 + d*f + (e*f + d*g)*x))/sqrt(-c*d*f*g + a*e*
g^2), -2*arctan(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d*f*g - a*e*g
^2)*sqrt(e*x + d)/(c*d*e*g*x^2 + a*d*e*g + (c*d^2 + a*e^2)*g*x))/sqrt(c*d*f*g -
a*e*g^2)]

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{d + e x}}{\sqrt{\left (d + e x\right ) \left (a e + c d x\right )} \left (f + g x\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x+d)**(1/2)/(g*x+f)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(sqrt(d + e*x)/(sqrt((d + e*x)*(a*e + c*d*x))*(f + g*x)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{e x + d}}{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (g x + f\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(e*x + d)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g*x + f)),x, algorithm="giac")

[Out]

integrate(sqrt(e*x + d)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g*x + f)),
 x)